Page 41 - 理化检验-物理分册2025年第一期
P. 41

任绪凯,等:柔性砂带磨削Q370R钢焊接接头组织结构与应力状态


                   broadening[J].Journal  of  Applied  Crystallography,  Materialia,2009,57(5):1648-1654.
                   1982,15(3):308-314.                            [12]  DERLET  P  M,VAN  PETEGEM  S,VAN
                [8]  LANGFORD  J  I.A  rapid  method  for  analysing  the   SWYGENHOVEN H.Calculation of X-ray spectra for
                   breadths of diffraction and spectral lines using the Voigt   nanocrystalline  materials[J].Physical  Review  B,2005,
                   function[J].Journal  of  Applied  Crystallography,1978,  71(2):024114.
                   11(1):10-14.                                   [13]  REN  X  K,HUANG  X  K,FENG  H  J,et  al.A  novel
                [9]  CHAI  Z,HUANG  X  K,XU  J  J,et  al.Kinetics    energy partition model for belt grinding of Inconel 718[J].

                   and  energetics  of  room-temperature  microstructure   Journal of Manufacturing Processes,2021,64:1296-1306.
                   in  nanocrystalline  Cu  films:the  grain-size  dependent     [14]  HUANG  X  K,GUO  Y  F,GUO  W  X,et  al.
                   intragrain  strain  energy[J].Journal  of  Applied  Physics,   Comprehensive investigations into the force and thermal
                   2022,131(5):055301.                               characteristics of belt grinding Inconel 718 under constant
                [10]  UNGÁR  T.Microstructural  parameters  from  X-ray   normal  forces[J].Journal  of  Manufacturing  Processes,
                   diffraction peak broadening[J].Scripta Materialia,2004,  2023,99:78-95.
                   51(8):777-781.                                 [15]  REN X K,CHAI Z,XU J J,et al.A new method to
                [11]  STUKOWSKI A,MARKMANN J,WEISSMÜLLER             achieve  dynamic  heat  input  monitoring  in  robotic  belt
                   J,et  al.Atomistic  origin  of  microstrain  broadening   grinding  of  Inconel  718[J].Journal  of  Manufacturing
                   in  diffraction  data  of  nanocrystalline  solids[J].Acta   Processes,2020,57:575-588.

                                                                                                            
              (上接第24页)
              最大夹层状态增大,直径为4 mm铆钉的拉脱力增大                               化[J].航空工艺技术,1997(4):40-42.
              比较明显,达到40%以上。                                       [3]  于凤亭.环槽铆钉露天贮存15年结果分析[J].强度与
                 (2)在最大、最小夹层状态下,环槽铆钉预紧                               环境,1996,23(2):42-47.
              力数据规律存在明显差异,最小夹层状态下直径为                              [4]  邓华,陈伟刚,白光波,等.铝合金板件环槽铆钉搭
                                                                     接连接受剪性能试验研究[J].建筑结构学报,2016,
              4 mm铆钉的预紧力较最大夹层状态增大5%,最小
                                                                     37(1):143-149.
              夹层状态下直径为5 mm铆钉的预紧力较最大夹层
                                                                  [5]  易志宏,刘浪,田波,等.桥梁用高强度环槽铆钉抗
              状态反而下降15%以上。
                                                                     剪承载力和疲劳特性试验研究[J].四川建筑,2021,
                  对环槽铆钉在最大、最小夹层状态下的拉脱力
                                                                     41(5):166-169.
              与预紧力数据变化规律进行分析,可以指导产品的                              [6]  李磊,骆传中,李建生.一种新的紧固件——环槽铆
              实际装配应用。
                                                                     钉[J].煤矿机械,1990,11(11):9-11.
                                                                  [7]  姜全新,燕翔,张振宇.沉头铆钉断裂原因分析[J].理
              参考文献:
                                                                     化检验(物理分册),2008,44(11):639-642.
                [1]  李英亮.紧固件概论[M].北京:国防工业出版社,2014.                [8]  厉晓航.某汽车换档摇臂断裂失效分析[J].理化检验
                [2]  杨信联,沈志诚.环槽铆钉拉模设计参数分析及其优                         (物理分册),2016,52(2):133-135.
























                                                                                                           29
   36   37   38   39   40   41   42   43   44   45   46