Page 35 - 理化检验-物理分册2024年第九期
P. 35

9


                 试验技术与方法                                                            DOI:10.11973/lhjy-wl230312



                           基于热模拟试验机的大试样平面应变技术



                                            史杰杰,王 昌,王 哲,刘彦宁,李继康
                                              (钢铁研究总院有限公司,北京 100081)

                      摘  要:使用热模拟试验机对大试样低碳钢进行了平面应变压缩热模拟试验,并对其各道次应力-
                  应变曲线及相变温度进行分析,获得了低碳钢变形区的显微组织演变规律。通过调整热模拟试验机
                  的参数,确保大试样在升温、保温和降温过程中保持温度稳定。结果表明:在保温阶段,试样的均温
                  区尺寸(长度×宽度×高度)为30 mm× 30 mm× 20 mm,温差约为20 ℃,满足平面应变压缩试验
                  对试样均温性的要求;压缩变形后试样的宽展较小,试样中间区域的显微组织相对均匀,力学性能
                  较稳定。采用热模拟试验机的平面应变技术可以较好地模拟低碳钢压缩变形时的平面应变状态,实
                  现同时分析材料的显微组织和力学性能。
                      关键词:  热模拟试验机;平面应变技术;大试样;低碳钢;显微组织;力学性能
                      中图分类号:TB31;TG115.2      文献标志码:A    文章编号:1001-4012(2024)09-0019-05

                              Large sample plane strain technology based on thermal
                                               simulation testing machine

                                      SHI Jiejie, WANG Chang, WANG Zhe, LIU Yanning, LI Jikang

                                   (Central Iron & Steel Research Institute Co., Ltd., Beijing 100081, China)

                      Abstract: A plane strain compression thermal simulation test was conducted on a large sample of low carbon
                  steel using a thermal simulation test machine, and the stress-strain curves at each pass and phase transition temperatures
                  were analyzed. The microstructure evolution law of the deformation zone of low carbon steel was obtained. By adjusting
                  the parameters of the thermal simulation test machine, the temperature stability of the large sample was ensured during
                  the heating, insulation, and cooling tests. The results show that during the insulation stage, the size of the uniform
                  temperature zone of the sample (length×width×height) was 30 mm × 30 mm × 20 mm, with a temperature difference
                  of about 20 ℃, which met the requirements of the plane strain compression test for the uniform temperature of the
                  sample. After compression deformation, the lateral spread of the sample was relatively small, the microstructure in the
                  middle area of the sample was relatively uniform, and the mechanical properties were relatively stable. The plane strain
                  technology of the thermal simulation testing machine could simulate the plane strain state of low carbon steel compression
                  deformation well, achieving simultaneous analysis of the microstructure and mechanical properties of the material.
                      Keywords:  thermal  simulation  testing  machine;  plane  strain  technique;  large  sample;  low  carbon  steel;
                  microstructure; mechanical property


                                                                                    [4]
                  模拟金属塑性大变形时,通常使用圆柱压缩以                          随后的力学性能测试 。与圆柱压缩热模拟技术相
              及平面应变压缩热模拟技术             [1-3] 。圆柱压缩试验比较          比,平面应变压缩变形区的应力状态、金属流动状态
              接近轧制过程,但是由于摩擦力的影响,试样变形不                           和热传导与轧制更相似,因此平面应变压缩技术也

              均匀,出现鼓肚现象,且试样的变形区较小,限制了                           被用来研究金属塑性大变形。目前,大多数平面应
                                                                变压缩试验技术只能用来研究材料的显微组织以及
                 收稿日期:2023-11-13                                流变应力,很少能实现同时研究试样的显微组织和
                 基金项目:钢铁研究总院有限公司科技基金项目(23S60500B)
                                                                力学性能     [5-7] 。为实现同时分析材料大变形后的显微
                 作者简介:史杰杰(1990—),男,博士,工程师,主要从事工艺模
              拟与相图计算研究,shijiejie1030@126.com                    组织与力学性能,进而提高热模拟分析的效率,大试
                                                                                                           19
   30   31   32   33   34   35   36   37   38   39   40