• 中国学术期刊(光盘版)全文收录期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 中国期刊网、万方数据库入编期刊
  • 中文科技期刊数据库(全文版)收录期刊
  • 中国期刊全文数据库全文收录期刊
  • 中国机械工程学会 理化检验分会 失效分析分会 会刊
Advanced Search
JIANG Xin, YANG Zhen-guo, JIANG Han-sheng, LV Yuan. PROGRESS OF MATERIALS APPLIED TO GROUND RADOMES[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2006, 42(5): 217-220.
Citation: JIANG Xin, YANG Zhen-guo, JIANG Han-sheng, LV Yuan. PROGRESS OF MATERIALS APPLIED TO GROUND RADOMES[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2006, 42(5): 217-220.

PROGRESS OF MATERIALS APPLIED TO GROUND RADOMES

More Information
  • Received Date: December 27, 2005
  • The progress of composite materials applied to ground radomes was comprehensively reviewed. The requests of materials of high performance radomes needed was summed up briefly. It was also related to the comprehensive analysis of the advantages, disadvantages and modification methods of several kinds of reinforced fibers, matrix resin, and core materials. At the same time the developing trends of materials applied to ground radome were also described. The progress of composite materials applied to ground radomes was comprehensively reviewed. The requests of materials of high performance radomes needed was summed up briefly.
  • [1]
    IEEE Std 145-1983, IEEE Standard Definitions of Terms for Antennas[S].
    [2]
    孙宝华,王 伟,孟松,等.低副瓣玻璃钢地面雷达天线罩的研制[J].纤维复合材料, 1999,16(4):36-38.
    [3]
    Mayhan Joseph T, Simmons Alan J. Low Sidelobe Kα-Band Antenna-Radome Study[J]. IEEE Transaction on Antennas and Propagation, 1975,23(4):569-572.
    [4]
    Shavit R, Ngai E C, Smolski A. High Performance Large Sandwich Radomes Operating in More Than One Frequency Band[J]. Antennas and Propagation, 1991,2(4):709-712.
    [5]
    刘萝葳,曹运红,王 蕾,等.导弹雷达天线罩用的工艺材料[J].战术导弹技术, 2004,(1):23-28.
    [6]
    Bleay S M, Humberstone L. Mechanical and Electrical Assessment of Hybrid Composites Containing Hollow Glass Reinforcement[J]. Composites Science and Technology, 1999,59:1321-1329.
    [7]
    Lee-Sulivan P, Chian K S, Yue C Y, et al. Effects of Bromination and Hydrolysis Treatment on Morphology and Tensile Properties of Kevlar-29 Fibres[J]. J Material Science Letter, 1994,13:305-309.
    [8]
    Benrashid R, Tesoro G C. Effect of Surface-Limited Reactions on the Properties of Kevlar Fibres[J]. J Textile Res, 1990,60(6):334-344.
    [9]
    Wu S R, Sheu G S, Shyu S S. Kevlar Fibre-Epoxy Adhesion and Its Effect on Composite Mechanical and Fracture Properties by Plasma and Chemical Treatment[J]. J Applied Polymer Science, 1996,62:1347-1360.
    [10]
    Lin T K, Kuo B H, Shyu S S, et al. Improvement of the Adhesion of Kevlar Fibre to Bismaleimide Resin by Surface Chemical Modification[J]. J Adhesion Science Technology, 1999,13(5):545-560.
    [11]
    Wu G M, Hung C H, Lu J C. Effects of Plasma Treatment on High Performance Fibres for Composites[A]. International SAMPE Symposium and Exhibition[C]. Covina: Society for the Advancement of Material and Process Engineering, 1999.
    [12]
    Takayanagi M, Katayose T. N-Substituted Poly (p-Phenylene Terephthalamide) [J]. J Polymer Science Polymer Chemstry Ed, 1981,19:113-1145.
    [13]
    Takayanagi M, Katayose T. Surface-Modified Kevlar Fibre Reinforced Ionomer, Dynamic Mechanical Properties and Their Interpretation[J]. Polymer Engineering Science, 1984,24(13):1047-1055.
    [14]
    Nardin M, Ward I M. Influence of Surface Treatment on Adhesion of Polyethylene Fibres[J]. Mater Science Technology, 1987,3:814-821.
    [15]
    Woods D W, Ward IM. Study of the Oxygen Treatment of High-Modulus Polyethylene Fibres[J]. Surface Interface Anal, 1993,20:385-391.
    [16]
    Nguyen H X, Riahi G, Wood G, et al. Optimization of Polyethylene Fibre Reinforced Composites Using a Plasma Surface Treatment[C]. Covina, CA, USA: SAMPE, 1988.
    [17]
    Kaplan S L, Rose P W, Nguygen H X, et al. Gas Plasma Treatment of Spectra Fiber[A]. International SAMPE Symposium and Exhibition[C]. Covina: Society for the Advancement of Material and Process Engineering, 1988.
    [18]
    Ladizesky N H, Ward I M. The Adhesion Behaviour of High Modulus Polyethylene Fibres Following Plasma and Chemical Treatment[J]. J Material Science 1989,24:3763-3773.
    [19]
    Ramos V D, Da Costa H M, Soares V L P, et al. Hybrid Composites of Epoxy Resin Modified with Carboxyl Terminated Butadiene Acrilonitrile Copolymer and Fly Ash Microspheres[J]. Polymer Testing, 2005,24:219-226.
    [20]
    D′Almeida J R M, Cella N. Analysis of the Fracture Behavior of Epoxy Resins Under Impact Conditions[J]. Applied Polymer Science, 2000,77:2486-2497.
    [21]
    高树理,张明习.功能复合材料的性能与应用[A].第十一届全国复合材料学术会议[C].合肥:中国科学技术大学出版社, 2000.12-21.
    [22]
    Li W, Lee L J. Low Temperature Cure of Unsaturated Polyester Resins with Thermoplastic Additives: I. Dilatometry and Morphology Study[J]. Polymer, 2000,41:685-696.
    [23]
    Li W, Lee L J. Low Temperature Cure of Unsaturated Polyester Resins with Thermoplastic Additives. II. Structure Formation and Shrinkage Control Mechanism[J]. Polymer, 2000,41:697-710.
    [24]
    Li W, Lee L J. Low Temperature Cure of Unsaturated Polyester Resins with Thermoplastic Additives III. Modification of Polyvinyl Acetate for Better Shrinkage Control[J]. Polymer, 2000,41:711-717.
    [25]
    Cao Z Q, Me′chin F, Pascault J P. Effects of Rubbers and Thermoplastics as Additives on Cyanate Polymerization[J]. Polymer International, 1994,34:41-48.
    [26]
    Hamerton I, Barton J M, Chaplin A, et al. The Development of Novel Functionalized Aryl Cyanate Esters. Part 2. Mechanical Properties of the Polymers and Composites[J]. Polymer, 2001,42:2307-2319.
    [27]
    Gibson L J, Ashby M F. Cellular Solids: Structure and Properties. 2nd ed[M]. Cambridge, UK: Cambridge University Press, 1997.
    [28]
    Smith F C, Scarpa F, Chambers B. Electromagnetic Properties of Re-Entrant Dielectric Honeycombs[J]. IEEE Microwave and Guided Wave Letters, 2000,10:451-453.
  • Related Articles

    [1]YAN Fuhua, LI Wei, FAN Weigang, ZHANG Yamei, ZHANG Yue. Cause of brittle fracture in precipitation hardened stainless steel springs[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2024, 60(1): 37-39. DOI: 10.11973/lhjy-wl202401009
    [2]CHENG Jian, FANG Kewei, LUO Kunjie, ZHANG Dubao, FEI Kexun. Fracture reason of gas apical axis[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2023, 59(12): 44-46,50. DOI: 10.11973/lhjy-wl202312011
    [3]YUAN Zhou, LI Jiansan. Failure Analysis on Brittle Fracture of a Stainless Steel Household Cutlery[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2017, 53(12): 912-914. DOI: 10.11973/lhjy-wl201712015
    [4]CHEN Yun-xia, ZHANG Xiao-rong. Fracture Analysis on Driving Shaft[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2015, 51(3): 209-212.
    [5]SHI Shun-mei, BIAN Mei-hua. Analysis on Fracture Reason of Roof Bolts[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2014, 50(5): 363-364.
    [6]QI Xue-jun, YANG Dong-mei, YAN Gao-hua. Analysis on Fracture Reason of 42CrMo Axis[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2013, 49(1): 55-58.
    [7]YIN De-jun, KANG Xue-qin, LIU Jie, ZHANG Xiang. Fracture analysis of Ratchet Wheel of Driving Shoveling Blade[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2012, 48(11): 753-755.
    [8]LI Pei-fen, BIN Yuan-hong. Failure Analysis on Fracture of 45 Steel Suspension Loop[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2012, 48(10): 701-703.
    [9]ZHANG Jin-yuan, TONG Lin, GAO Wei, LIU Qing-lin. Reasons Analysis on Fracture of φ102 mm×9.19 mm DZ55 Geological Drill Pipe Body[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2012, 48(6): 410-413.
    [10]CHEN Ping, LAI Kai-zhong, LI Yue-sheng, LI Shu-xue. FRACTURE ANALYSIS OF KINESCOPE SHRINK-BAND[J]. PHYSICAL TESTING AND CHEMICAL ANALYSIS PART A:PHYSICAL TESTING, 2008, 44(7): 385-388.

Catalog

    Article views (2) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return